Development of pore solution chemistry and hydrate assemblages during hydration of calcium sulfoaluminate cements

Frank Winnefeld, Barbara Lothenbach, Mohsen Ben-Haha

Swiss Federal Laboratories for Materials Testing and Research Concrete/Construction Chemisty Lab Dübendorf, Switzerland

Materials Science & Technology

Outline

- Introduction
- Used cements
- Hydration of calcium sulfoaluminate cements
 - Isothermal heat flow calorimetry
 - X-ray diffraction analysis
 - Thermogravimetric analysis
 - Pore solution chemistry
 - Microstructure (SEM)
 - Thermodynamic modelling
 - Conclusions

Comparison OPC - CSA

	OPC	CSA	
main phases *	C ₃ S, C ₂ S, C ₃ A, C ₄ AF	C ₄ A ₃ s (= yeʻelimite)	
raw materials	limestone & clay	limestone, bauxite & anhydrite	
burning temperature	≈ 1450 °C	≈ 1250 °C	
CO ₂ -release from raw materials **	C ₃ S: 1.80 g / ml C ₃ S	C ₄ A ₃ s: 0.56 g/ml C ₄ A ₃ s	
grindability	medium	easy	
gypsum addition	≈ 4-8 wt%	≈ 20-25 wt%	
w/c total hydration	≈ 0.4	≈ 0.8	
hydration products	C-S-H phases, CH, AFt,	AFt, AFm, AI(OH) ₃ gel	

* Cement notation: C = CaO, $S = SiO_2$, $A = AI_2O_3$, $F = Fe_2O_3$, $H = H_2O$, $s = SO_3$

** Gartner E., Cem. Concr. Res. 34 (2004), 1489.

EMPA 🎽

CSA-Cements ...

... have attracted new interest during the climate debate as they:

- need lower burning temperatures,
- release less CO₂ from the raw meal (less limestone),
- yield a higher volume of hydrate phases (higher water/ cement ratio)

compared to ordinary Portland cement.

Besides that, they are of interest concerning waste encapsulation.

But they have some drawbacks:

- environment (SO₂ release)
- risk of expansion (ettringite is main hydration product)

CSA-cements: risk of expansion

United States Patent 4409030, 1983: Material for destroying concrete structures

... comprises a mixture of ... coarse-grained quicklime ... and ... cement. The cement may contain calcium sulfoaluminate ... The material is blended with water and then injected into holes formed in the body to be destroyed, the material expanding as it hydrates to crack and fracture the body.

Basic research is needed to understand the hydration mechanisms of calcium sulfoaluminate based systems !

Hydration of pure ye'elimite

(1) $C_4 A_3 s + 18 H$ \rightarrow C₃A·CsH₁₂ + 2 AH₃ (monosulfate) (2) $C_4A_3s + 2 CsH_2 + 24 H \longrightarrow C_3A \cdot 3CsH_{32} + 2 AH_3$ (ettringite) (3) $C_4A_3s + 6 CH + 8 CsH_2 + 74 H \longrightarrow 3 C_3A \cdot 3CsH_{32}$

heat flow calorimetry w/c = 2

Hydration kinetics of CSA cements: influence of calcium sulfate

enables to control early hydration

calcium sulfate with poor reactivity "chaotic" early hydration

* amounts of gypsum given as anhydrous calcium sulfate

Strength development of CSA cements

- very high strength despite high water/cement-ratio
- gypsum increases early strength

Used CSA-cements - composition

chemical analysis			potential p	potential phase content		
wt%	CSA-1	CSA-2	wt%	CSA-1	CSA-2	
CaO	35.4	41.2	C ₄ A ₃ s	50	54	
SiO ₂	3.2	6.9	CA	8	-	
Al_2O_3	35.5	26.8	C ₂ AS	15	-	
Fe ₂ O ₃	0.88	0.88	C ₂ S	_	17	
MgO	0.76	0.75	Cs	-	22	
Na ₂ O	0.05	0.13	CsH ₂	22	-	
K ₂ O	0.21	0.40	others *	5	7	
TiO ₂	1.8	1.2	* mainly titanium containing phases water/cement ratio			
SO ₃	16.8	19.5				
L.O.I.	5.1	1.84				

CSA-2: 0.80

Isothermal heat flow calorimetry

Hydration (XRD) of CSA-1

Hydration (TGA) of CSA-1

Pore solution composition of CSA-1

Hydration (XRD) of CSA-2

Hydration (TGA) of CSA-2

Pore solution composition of CSA-2

Microstructure of CSA-1 and CSA-2

16 h

28 d

CSA-1

E = ettringite C = clinker G = gypsum Gel = gel-like phases

CSA-2

EMPA

S = strätlingite

CSA-1, 16 h

Thermodynamic modelling

Modelling: solid phases of CSA-1

Modelling: liquid phases of CSA-1

Modelling: solid and liquid phase of CSA-2

Up to now, the hydration has been modelled only with insufficient accuracy (poor correlation with experimental data, especially with pore solution composition),

mainly due to:

some uncertain thermodynamic data (e. g. CAH₁₀)
kinetic restraints (slow dissolution of anhydrite)

=> work in progress

Conclusion – hydration of CSA cements (I)

Solid phases:

- ettringite formation until CaSO₄ is (almost) used, then monosulfate occurs
- Al(OH)₃ gel forming by-product of hydration
- with C₂S als minor phase (CSA-2) strätlingite forms after 28 d
- dissolution of calcium sulfates hindered

Pore solution:

- first hours: dominated by alkalis, calcium and sulfate pH 10.5 - 10.8
- when CaSO₄ (almost) used: mainly alkalis, OH and Aluminum pH 12.5 - 12.8 after 28 d

Conclusion – hydration of CSA cements (II)

Microstructure:

- CSA-1: quite dense already after 18 hours, very dense after 28 days despite high w/c of 0.72
- CSA-2: dense, but inhomogeneous large strätlingite crystals after 28 days

Application:

- binder for various applications (e. g. "plaster"boards)
- acceleration of OPC or slag hydration in ternary blends also incorporating gypsum or anhydrite
- shrinkage reducing / expansive agent
- waste encapsulation

